ایرنا - محققان شرکت هیولت پاکارد موفق شدهاند فناوری تازهای را ابداع کنند که میتواند جانشین فناوری کنونی تراشههای سیلیکنی شود که در سالهای پایانی عمر خود قرار دارند.
ترانزیستورها، کلیدهای الکترونیک هستند که در قلب دستگاههای الکترونیک از جمله کامپیوترها جای دارند.
هراندازه سرعت و طول عمر این دستگاهها بیشتر باشد و شمار زیادتری از آنها را بتوان در محدوده کوچکتری جای داد امکان بیشتری برای بالا بردن توان محاسباتی رایانه بوجود میآید.
ترانزیستورهایی که در حال حاضر مورد استفاده قرار دارند با استفاده از فناوری حک کردن مدارهای یکپارچه حاوی هزاران هزار ترانزیستور بر روی تراشههای سیلیکنی ساخته میشوند.
عمل حک کردن که نوعی لیتوگرافی است با کمک پرتوهای قوی لیزر به انجام می رسد، اما جا دادن شمار هر چه بیشتری از این ترانزیستورها بر روی تراشهها کاری نیست که بتوان آن را تا بینهایت ادامه داد.
از یک سو متمرکز کردن پرتوهای پرقدرت لیزر از نظر تکنیکی دشوار است و از سوی دیگر زمانی که فاصله مدارهای برروی تراشهها از حد معینی کمتر شود، الکترونها که میباید به وسیله کلیدهای ترانزیستوری کنترل شوند، به صورت خودبخودی و طی فرایندی که به نقب زدن کوانتومی شهرت دارد، از درون سدهای پتانسیل الکتریکی که برای جلوگیری از حرکت ناخواسته آنها تعبیه شده گذر میکنند و فعالییت تراشه را مختل میسازند.
بر اساس پیشبینیهای کنونی در پایان دهه جاری، تراشههای سیلیکنی به حد نهایی ظرفیت کوچک شوندگی خود میرسند و به این ترتیب دیگر نمیتوان با استفاده از این نوع تراشهها بر سرعت و قدرت کامپیوترها افزود.
شرکتهای سازنده کامپیوتر به منظور مقابله با این محدودیت تلاشهای تحقیقاتی گستردهای را آغاز کردهاند. از جمله این شرکتها، آیبیام است که در اواخر سال ۲۰۰۳اعلام کرد که در حال تکمیل روشی برای ساختن تراشه های الکترونیک است که در آن خود مولکولهای پلیمری با استفاده از یک روش خود-مونتاژی مدارهای الکتروینک مورد نظر را حاوی انواع ترانزیستورها و در شمار فراوان، در مقیاس مولکولی تولید میکنند.
این شیوه هرچند میتواند تراز ساخت کامپیوترهای پرقدرت را تا حد چشمگیری ارتقا بخشد اما به واسطه دشواری کنترل عمل پلیمرها در سطح مولکولی نمیتوان انتظار داشت که در آینده نزدیک این نوع فناوری برای بهرهبرداری آماده شود.
فناوری ابداعی شرکت هیولت پاکارد در مقایسه با فناوری مولکولی قابل دسترستر است و نخستین آزمایشهایی که با استفاده از آن صورت گرفته با موفقیت همراه بوده است.
مهندسان هیولت پاکارد برای ترانزیستورهای خود که در مقیاس نانو (یک میلیاردیم متر) ساخته میشود نام "چفت یا کلون افقی "crossbar latchesرا برگزیدهاند.
این تراشه جدید از ترکیبی از سیمهای پلاتینیوم که بطور افقی و عمودی در یک محدوده کوچک بر رویهم قرار میگیرند و چهارخانههای مینیاتوری بوجود می آورند به همراه مولکولهای اسید استریک که بر روی محل تقاطع هر دو سیم جای میگیرد، بوجود آمدهاند.
محل تقاطع هر دو سیم به صورت یک ترانزیستور عمل میکند. اندازه این نوع ترانزیستورها در مقایسه با کوچکترین ترانزیستورهای سیلیکنی به مراتب کوچکتر است.
ریزترین ترانزیستور سیلیکنی ۹۰نانو متر طول دارد در حالیکه طول این ترانزیستورها از ۲تا ۳نانو متر تجاوز نمیکند.
به این ترتیب میتوان با شمار بیشتری از ترانزیستورها در محدودهای کمحجمتر و با مصرف توان و انرژی کمتر کانپیوترهایی پرقدرتتر تولید کرد.
اما محققان هیولت پاکارد تاکید دارند که فناوری ابداعی آنها در آغاز راه است و تکمیل آن چند سالی به طول میانجامد. عمر این ترانزیستورهای جدید و سرعت عمل آنها در مقایسه با تزانزیستورهای سیلیکنی کنونی بسیار کمتر است.
ترانزیستورهای جدید فعلا میتوانند تنها تا ۱۰۰نوبت عمل سوئیچینگ را انجام دهند و سرعتشان چند هزار مرتبه کمتر از سرعت ترانزیستورهای سیلیکنی است.
با این حال به اعتقاد متخصصان شرکت هیولت پاکارد، فناوری تازه تا سال ۲۰۱۲می تواند جایگزین فناوری کنونی شود و در آن هنگام درست به همان شکل که زمانی ترانزیستورها لامپهای کاتدی را کنار گذاشتند و جای آنها را گرفتند، سیمهای نانو نیز ترانزیستورها را کنار میگذارند و جایگزین آنها میگردند
بطور مثال اگر یک سطح ساخته شده از مولکولهای آب گریز داشته باشیم این سطح خودش را تمیز می کند چون آب با سطح برخورد نمی کند و آلودگی را از خودش دور می کند . دلیل خشک ماندن سطح برگ نیلوفر آبی نیز همین است.آب روی شیشه معمولی پخش می شود ولی آب روی سطحی با ساختار نانو نمی ماند با یکنواخت سازی سطوح می توان سطحی کاملا ضد خش را بوجود آورد . امروزه پنجره هایی ساخته می شود که شفافیتشان با جریان الکتریسیته تغییر می کند یا شیشه هایی که در دماهای بالا عایقند .
رسیدن به ماده را از اتمها شروع می کنیم فرض کنید می توانیم آنها را ببینیم و ابزار لازم را در اختیار داریم ( میکروسکوپ قرن 21 بر اساس پدیده کوانتوم ) . رد شدن توپ از دیوار در مکانیک کلاسیک غیر ممکن است ولی در مقیاس اتمی الکترونها می توانند از لایه ها و ساختارها رد شوند ، اساس کار این میکروسکوپ همین است . به کمک این وسیله سطح مواد را در مقیاس اتمی بررسی میکنیم قلب میکروسکوپ موازی سطح ماده حرکت می کند البته ماده باید رسانای جریان الکتریسیته باشد هرگاه نوک میکروسکوپ از روی یک اتم رد شود الکترونها از ماده وارد نوک میکروسکوپ می شوند بدین شکل جریان ضعیفی بوجود می آید هر چه این نوک به ماده نزدیکتر شود جریان قویتر می شود این جریان را بر حسب ارتفاع محاسبه می کنند نقطه به نقطه و خط به خط این کار انجام می شود و به این شکل تصویر توپوگرافی از سطح ماده بدست خواهد آمد. این تصویر کاملا دقیق بوده و می توان بوسیله آن نه تنها ماده را در مقیاس اتمی دید، بلکه می توان در مقیاس اتمی روی آن کار کرد .
در حقیقت میکروسکوپ الکترونی دقیقترین و بهترین ماشین ابزار دنیاست . با دادن بار الکتریکی می توان اتمها را یک به یک حرکت داد به این ترتیب می توان اجسام بزرگتری ساخت مانند آجر برای ساختن خانه ، قفسه ، سیم ، لوله در مقیاس نانوسکوپی . با استفاده از اتم کربن می توانیم ساختارهایی را بسازیم که قبلا وجود نداشتند.
یکی از ساختارهایی که از کربن می شناسیم گرافیت است که در آن اتمهای کربن بصورت شش ضلعی کنار هم قرار گرفته اند و ساختار ورقه ای ایجاد کرده اند . ودیگری الماس که در آن اتمهای کربن شکل چهارضلعی دارند و در سه جهت فضا تکرار شده اند .
ساختار جدیدی از کربن فولرن است که شامل 60 اتم کربن می باشد. باکی بال شناخته شده ترین فولرن استکه شبیه توپ فوتبال امی باشد و از 20 شش ضلعی و 12 پنج ضلعی ساخته شده است . لوله های بسیار باریک کربنی انواع مختلف فولرن می باشند که به نانوتیوب یا نانو لوله معروفنداین لوله ها بسیار مقاومند وقطر آنها حدود 1/4 نانومتر و طول آنها حدود 10-20 میکرون است در مقیاس اتمی میکرون طول زیادی است ولی در مقیاس معمولی خودمان 100000 بار نازکتر از مو !
برای ساخت لوله های کربنی دمای زیادی نیاز است تا اتمها بتوانند با هم ترکیب شوند که این دما از طریق سوختن گاز استیلن تامین می شود .
یکی از مقاومترین الیافی که بشر ساخته 6 بار از فولاد سبکتر ولی مقاومت آن 100 برابر فولاد است.
محققینی که قوه تخیل قوی دارند به فکر ساخت کابلهایی هستند که بتوان بوسیله آن به فضا رفت.
کاربرد عینی تر آن تلاش برای ساخت پروتزهای استخوان است از آنجا که این پروتزها از کربن هستند با بدن سازگاری دارند.
شیمیدانها و زیست شناسها بمنظور تشکیل خودبخودی درشت مولکولها بدنبال راههایی هستند که مولکولها در مکان مورد نظر آنها قرار گیرد .
سطحی را در نظر بگیرید که مولکولها بر روی آن دو منطقه با خواص متفاوت بوجود می آورند . سپس مولکولهایی فرستاده می شوند که یک منطقه را می شناسند و با بار الکتریکی متصل می شوند . سپس سری بعدی مولکولها فرستاده می شود که روی سری قبل قرار می گیرند و کار ادامه پیدا می کند بدین ترتیب می توان سطوح واسطه ای بین مدارهای الکترونیکی دارای لایه ها و بافتهای زنده درشت مولکولها برقرار کرد یعنی می توان بافتهای زنده را به کامپیوترها متصل کرد.
با ربط دادن زیست شناسی به کامپیوترها می توان نابینا را بینا و ناشنوا را شنوا کرد ویا داروهایی را در شرایط بدنی هر بیمار آزمایش کرد.
برای نانوتکنولوژی باید یک شیمیدان ، زیست شناس ، فیزیکدان ومهندس الکترونیک بود .
محققان رویای نانو روباتها را دارند که می توانند سلولهای آلوده را شناسایی کنند و از بین ببرند . نانو اجزایی که دارویی هستند و روی ویروسها اثر می کنند.
منبع: kimiaedu.com
مدلسازی مولکولی پایهای است برای ارتباطات، درک و توسعة فناوریهای نو نظیرفناوری نانو. این روش راههای جدیدی را در فکر کردن و رسیدن به اهداف فناورانه، فراهم میسازد، بنابراین برای توضیح موفقیتآمیز کاربردهای این روش، توضیح جنبههای تکنیکی به تنهائی کافی نیست اهمیت نیروی انسانی متخصص، هدف نهائی هر پروژه، ساختار سازمانی و زیرساختهای محاسباتی در موفقیت این روش اهمیت قابل ملاحظهای دارند. یافته ها، در چهارچوب «کاربردها» (از جنبة فنی) و« پروسههای مؤثر درکاربرد» ( تمام زیر ساختهای ملزوم) طبقه بندی میشوند. در مقاله قبلی مروری داشتیم بر قابلیتها و چالشهای دانش انفورماتیک در فناوری نانو. دراین مقاله میکوشیم تا حوزههای تحقیقاتی و صنعتی را ،که مدلسازی مولکولی در آنها، پذیرفته شدهاست ، معرفی کنیم و از این دیدگاه اهمیت و نقش دانش انفورماتیک را در فناوری نانو روشن کنیم. |
یافته های اصلی: |
الف)کاربردها |
1) مدلسازی مولکولی، به عنوان یک ابزار سودمند و کارا در پارهای از صنایع بکار گرفته شده است. |
|
2) این روشها مقبول شدهاند زیرا آنها آزمایش خود را پس دادهاند: |
موفقیتهای بزرگ طبیعتاً توجهات بیشتری را جذب میکند، هم توسط شرکتها و هم در عرصة رقابت بین شرکتها. مطالعات اخیر 3 زمینة بزرگ موفقیت آمیز در زمینة مدلسازی مولکولی را معرفی کرده است: کشف داروها، توسعة کاتالیستهای هموژن و شیمی حرارت آنالیز اجزاء سازهای مواد به این روش اثر مؤثری بر فیزیک ماده – چگال گذاشته است. موفقیت ها همیشه در مسیر قابل پیشبینی نبوده است. ده یا حتی بیست سال پیش، Rational drug design به عنوان آیندة صنعت داروسازی شناخته میشد- در حالیکه، امروزه طراحی و ساخت داروها مبتنی بر «کامپیوتر»، بر مبنای خواص فیزیکی وشیمیایی آنها- که به نام "Docking" نامیده میشود- با در نظر گرفتن اجزاء مولکولی غشاءهای سلولی یا سایر اجزاء وابسته به آنها ( اهداف تحت درمان)، آینده این صنعت را پیشبینی میکند. امروزه تا حدودی به این هدف رسیدهایم و داروهای جدیدی به عرصةتجاری سازی رسیدهاند. بهرحال، اشتیاق به منظور طراحی داروهای ترکیبی، به نظر میرسد که روش ساخت ترکیبی وزنی را از رونق انداخته است . افق جدید این بود که شیمی ترکیبات، سریعتررشد خواهد کرد و کمتر محدود به تجربه باشد، اما به هر صورت، تلاش در جهت ساخت هر ترکیبی امروزه یک فرآیند مهار کردنی است. واقعیت حاضر، مبتنی بر دانش کامپیوتر محور است کاوشهای عقلانی در حوزة مقدورات داروهای جدید به سرعت جهت شناسائی کتابخانة مولکولهائی که میبایستی بصورت ترکیبی در آزمایش بکار گرفته شوند، اعتبار مییابند، در این نقش و در فرم خالص آن طراحی داروها در حوزه کاندیدادهای مقدور و محدود شده معتبر و اثبات شدهاند. |
3) بسیاری از کمپانیها، چنین مدلسازیهایی را به عنوان یک ضرورت می نگرند، در حالیکه برخی هنوز آن را یک وسیلة لوکس میبینند: |
در زمینههای موفقیت آمیز بر شمرده شده، هیچیک از شرکتهای فوق حتی فکر نمیکردند که بدون مدلسازی مولکولی بدین پایه از پیشرفت برسند. در سایر زمینهها، مدلسازی یک زمینة فعال در زمینه کاوشهای پژوهشی است یا انتظار میرود که مورد استفاده واقع شود. مدلسازی مولکولی در صنعت نیز جایگاه خود را باز کرده است. |
4) نقش پایهای مدلسازی مادهای و مولکولی در صنایع شیمی، سرعت توسعه محصولات و آزمایشهای راهنما را افزایش داده است: |
مشارکت فعال مدلسازان در توسعة سریعتر پروسههای تولید، مکرراً به اثبات رسیده است. اثر توانمند، اغلب بسیار مؤثر برای حل مسأله، میزبانان بزرگی را برای مدلسازان مولکولی فراهم آورده است. مزیت عمده این روش در این است که با استفاده از محاسبات نسبتاً ساده تعداد حالات مقدور برای حل یک مسألة واقعی را میتوانیم کم کنیم، چه در مرحلة طراحی و تولید و چه در مراحل توسعه با اتخاذ روشهای دقیق و صحیح اعتبار آزمایشات را تأیید کنیم یا آنها را هدایت کنیم. مدلسازی میتواند انتخابها را هدایت کند و حتی در اغلب موارد میتواند راههای تولید بهتر را جهت آزمایش، شناسائی کند. در عوض مدل سرویسهای تکنیکی تهیه شده در قالب مدلسازی مولکولی، زمانی که کاملاً با تیمهای آزمایشگاهی و توسعة داخلی، مزدوج نشده است، دارای تجارب ناموفقی بودهاند. از این رو مدلسازی مولکولی، می بایستی در تعامل کامل با پژوهشگران آزمایشگاهی باشد. |
5) علم و تکنولوژی گامهای بلندی را در راستای همگرائی موفقیتآمیز برداشتهاند. |
سودمندی مهندسی از پیشرفتهای علمی و نیز تشویق علم به رشد و حرکت، از مزایای مشهود همگرائی علم و مهندسی است. یک مثال برگزیده از این تعامل در فضای زمان و مکان، گروههای کوچک اتمی که توسط شیمی کوانتوم قابل تفسیر بودند از حد اتم هیدروژن و مولکول هیدروژن تا حد دامنههای چندین اتمی شبیه سازی شدهاند و پیشرفتهای عمدهای را برای دانشمندان و مهندسان پدید آوردهاند: |
|
همزمان با توسعة دانش نانو، مدلسازی مولکولی به عنوان ابزاری منحصر به فرد، مورد توجه واقع شد. نانو بر غنای دانش مدلسازی مولکولی افزوده است و آن را به گونهای جدی متحول کرده است. به همین ترتیب، دانش شیمی ژنتیک( جانشانی ژنهای موجود در ساختار DNA)، نیازمند این است که بدانیم چگونه دانش به درون حوزة پروتئین سازی رسوخ میکند؟(جانشانی پروتئینهای موجود وفعال). مدلسازی همچنین نقش مهمی در رمز گشائی این پروسهها ایفا میکند واین نکته را کشف خواهد کرد که چگونه یک رشته از آمینو اسیدها میتواند خودش را در هندسة پروتئین بگونهای آرایش دهد که رفتار خاصی را موجب شود. علوم کامپیوتر در این راستا کمکی مؤثر و تحسین برانگیز ایفاء خواهد کرد. |
6) مدلسازی مولکولی جهت ادغام و تفسیر ابزارهای تحلیلی بکار گرفته خواهد شد. |
در پارهای موارد، پیش گوئیها دارای حداقل قطعیت نسبت به اندازهگیریهای کالریمتری است. به گونهای که مؤثراً آنها را عوض میکنند.مدلسازی یک بخش پر اهمیت از طیف سنجی نوری NMR و کریستالوگرافی است . نقش های آتی را در حوزة تفسیر کروماتوگرافی گاز، دایرة رنگی لرزهای و طیف سنج جرمی بازی خواهد کرد. |
7) شباهتهائی برجستهای در بخشهای مختلف صنعتی وجود دارد. |
مدلسازهای حلالیت و مخلوط کنهای واقعی و مدلهائی که بتواند شیمی را در قالب زیست – شیمی به منظور رفتارشناسی بیولوژیک ترکیب کند، پایهای برای طراحی داروها هستند. اما همچنین پایهای برای مطالعات شیمی زهرشناسی هستند. با پیش گوئی زهرشناسی شیمیایی، میتوان امیدوار بود که تولیداتی طراحی خواهد شد که کارآئی بالاتر با حداقل مخاطره خواهند داشت. |
8) نیازهای عمده و مورد نیاز صنعت روشهائی هستند که بزگتر، بهتر و سریعتر، باشند و در دامنة بزرگی معتبر باشند و مشتمل بر تکتیکهای چند مقیاسی باشند: |
مدلسازی چند مقیاسی بر پایة مدلهائی ساخته میشود که مبتنی بر حدودی در حوزة زمان واندازه هستند نظیر محاسبات انرژی Single-Point در حوزة گاز ایده آل(ایزوله شده) در صفر درجة کلوین.مدلسازی در حوزه های محدود اغلب با خواص ان در محیطهای پیوسته بوسیله مکانیک آماری ادغام میشود(نظیر ترموشیمی گاز ایده آل) یک فشار دائمی بر پژوهشگران در راستای توسعه سریعتر و دقیق تر این روشها وجود دارد. در انتها، نیز آزمایش کردن این روشها جهت تعیین اعتبار آنها الزامی است. توجه کنید که اساس این«اعتبار بخشی» بر این مبنا است که اعتبار این روشها را به چه حوزهها و به چه حدهائی میتوان تعمیم داد. |
مدلسازی در حوزة نانوساختارها و نانوابزارها: |
فناورینانو، فناوری در مقیاس نانو جهت مواد و پرسههای مرتبط با آن است . یک اتم نوعی، دارای قطر واندروالسی، معادل چند دهم نانومتر است. بنابراین مولکولها و ماکرومولکولها در ابعاد نانوئی وکوچکتر هستند. همة برهم کنشها وخواص ماکروسکوپیک ریشه در این مقیاس دارند و بوسیلة مکانیک آماری و فیزیک ماده- چگال این دو فضا به هم مرتبط میشوند. در همان لحظه خواص مکانیکی تحت تأثیر ساختار الکترونی، بر هم کنشهای غیر پیوندی، یا مقیاسهای واسطه نظیر meso، رفتارهای سوپر مولکولها، است . هر یک از این دامنهها دارای تأثیر و وزنی در مدلسازی مولکولی است ومقدوراتی در جهت پیوند میان این فضاهای کاملاً وابسته به هم، در جهت ساخت پازل ماکروئی، رو به رشد نهاده است. |
مدلسازی مولکولی و اثر آن بر صنعت( قابلیتها و چالشها): |
|
چشم انداز: |
نتایج مدلسازی مولکولی یا محاسبات، در بخش شیمی تحلیلی کاملاً جا افتاده است. مدلسازیهای چند مقیاسی نیز با دقت بالاتر ومحاسبات سنگین تر پیگیری می شود. تئوریهای مولکولی و مدلسازیها، شامل تئوری ساختار الکترونی ومدلسازی به عنوان یک زبان بینالمللی علمی در اغلب شاخه های علوم ومهندسی پذیرفته شده است. شیمی، فیزیک، بیولوژی بر مبنای مشاهدات، و دستکاریهایی در حوزة انسانی، به مدلسازی مولکلوی وابسته شدهاند. علوم مهندسی این علوم محض را با یکدیگر ترکیب کرده و با ملاحظات اقتصادی و مؤلفه های کمی فیزیک آن را به حوزة تجارت میرسانند. فیزیک محیطهای پیوسته و تفکر عمیق در طبیعت رفتاری الکترونها در اتم در سالهای 1800 میلادی خبر از توسعة مکانیک آماری و مکانیک محیطهای پیوسته میداد. ظهور دانش شیمی- فیزیک و اساس ساختارهای مولکولی دراواخر 1800 میلادی حاکی از درک پیوندهای شیمیایی میداد که در نهایت در سالهای 1930 توسعه یافت و روشهای شیمی کوانتوم که در سالهای 1950 توسعه یافتند. مدلسازی مولکولی یک روش مرکزی است که با درک رفتار کوانتائی مواد، حتی از دیدگاه پیشگوئی به موفقیتهائی رسیده است. توسعة تولیدات و عوض شدن پروسه های ساخت وتولید با ظهور مدلسازی مولکولی واثر آن دستخوش دگرگونی شده است مدلسازی مولکولی می تواند به عنوان یک زیر ساخت نامرئی در توسعة علم و فناوری مورد توجه قرار گیرد. پیشرفتهائی در قدرت سخت افزاری کامپیوترها، مسبب پیشرفتهائی در نرم افزارهای شبیه سازی شده است که تغییراتی رویایی را در مدلسازی پدید آورده است و بسیاری از مسائل بغرنج را حل کرده است و حتی در نگرشهای بنیادین علوم، تغییراتی را بوجود آورده است. |
آیا دانش هوش مصنوعی دنیا را دگرگون خواهد کرد: |
ارزش نتایج محاسباتی، سریعاً افزایش خواهد یافت در صورتیکه فوراً گسترش و رشد یابد. اما آنها زمانی گرانبها خواهند شد که معنی این نتایج به سمت مهندسی یا نیازهای توسعه، هدایت شود. پیشرفتهائی در قدرت محاسباتی، درک و قابلیتهای ما را در کاربردی کردن فیزیک و شیمی محاسباتی توسعه خواهد داد. همانگونه که پیشرفتهائی بزرگ در تکنولوژی اغلب منشعب از نتایج و مشاهدات آزمایشگاهی است، مدلسازی مولکولی با افزایش دقت در حل پیچیدگیهای مدل به گونهای که منجر به نتایج سودمند کاربردی شود، در رشد تکنولوژی مفید است. البته نباید از نظر دور داشت که 90% مسائل در ذهن ساخته و پرداخته میشود وابزارهای محاسباتی تنها راهی برای آزمایش، روشهای مختلف حل هستند. مدلسازی مؤثر و مدیریت نتایج آن، به برداشت کارشناسی و موفقیت آمیز از کدهای مدلسازی مولکولی وابسته است البته، انتخاب روشهای تئوری بر پایة مجموعة شیمی کوانتوم یا پتانسیلهای بر هم کنشی ( شبیه سازی مولکولی) حداقل نقش و سطح را در تصمیم سازی ایفاد می کنند. کدام ترکیب برای متعادل کردن زمان و دقت مورد نیاز است؟ بهترین تنظیمات برای بهترین نتایج صنعتی کدامند؟ یک Interface مناسب میتواند در خواستها را ارزیابی کند و پیشنهاداتی را در جهت برآورد زمان محاسبات و سایر منابع مورد نیاز، به استفاده کننده نشان دهد. همچنین با نشان دادن نتایج وتصویر سازی نتایج محاسبه شده راههائی را برای ارزیابی نشان میدهد. |
منبع:http://www.nano.ir
منابع :
1. Kay, L.E. 1992. The Molecular Vision of Life: Caltech, the Rockefeller Foundation and the Rise of the New Biology. Oxford University Press.
2. Warnatz, J. 1981. Proc. of the Combustion Institute, 18, 369.
4. Westmoreland, P.R., J.B. Howard, and J.P. Longwell. 1986. Proc. of the Combustion Institute, 21, 773.
علاوه بر مکانیک کوانتوم محاسباتی و شبیه سازی، روشهای مدلسازیی، که ارزشی معادل یا حتی اثری بزرگتر در کاربردهای صنعتی دارند، وجود دارد. بر خلاف مدلهای مبتنی بر مکانیک کوانتوم محاسباتی وشبیه سازی که «انرژی»، را ارزیابی میکنند و بر اساس آن پروسههای ترمودینامیک را پیش بینی میکنند، این مدلهای نوین که بر پایه غیر «انرژی» استوارند، عموماً طبیعتی کیفی نگر دارند و در مطالعه فلسفه طراحیها بکار گرفته میشوند.
گرافیک کامپیوتری:
رشد گرافیک کامپیوتری محتملاً بزرگترین مولفه فناوریانفورماتیک در گستره وسیعی از شبیه سازیهای مولکولی است:
قابلیت تصویر سازی اهداف داروها( زمانی که ساختار آنها شناخته شده است) یا خانواده ترکیبی از آنالوگهای فعال و غیرفعال در حوزه مدلسازی، ضروری مینماید.(مثلاً در ساخت شیمیایی مواد) گرافیک کامپیوتری قدمتی از آغاز ترکیب صدا و رنگ به منظور شفاف سازی پیامها، تاکنون که با هدف توسعه دانش تصویرسازی کامپیوتری برای نمایش پروسههای شیمیایی و بیوفیزیکی، بکار گرفته می شود، دارد.
«هندسه بعد»:
زمینه مهم دیگری که توسعه علمی آن اثری مهم،حداقل در شبیهسازی و مدلسازی در زیست – فیزیک و زیست – شیمی و صنعت داروسازی بر جای خواهد گذاشت، دانش«هندسه بعد» است .
انتقال این حوزه از ریاضیات محض بسوی علمشیمی و سیستمهای مولکولی بوسیله"Grippen" صورت گرفت." "Kuntz","Havel در اواخر دهه 70 میلادی ( CrippenوHavel در 1988 میلادی) این تکنیک را در اندازهگیریهایNMR و QSAR بکار گرفتند. Crippen این پروسه را تا تحقق این علم برای مدلسازی بر هم کنش ماکرومولکولهای پیوندی، ادامه داد. (Crippen 1999)
QSR/QSPR:
سومین زمینه مدلسازی شامل ارتباط میان دادههای آزمایشگاهی با همان خواص فیزیکی یا غیر آن، در قالب سیستم مدلسازی است. این روشها که موسوم به QSR/QSPR میباشند دارای تاریخچهای طولانی در مدلسازی سیستمهای بیولوژیک میباشند و اکنون نیز نقش مؤثری در تحلیل نتایج و استفاده از نتایج مدلسازی مولکولی در صنایع شیمی دارند.
یک مثال نمونه جهت استفاده از این تکنیکها این است که:
نمونهای را با یک سری از خواص فیزیکی در نظر بگیرید که میخواهید آن را بهینه کنید(سودمندی دارو، ارتباطات آنزیمی، مقاومت کششی یک پلیمر)
چگونه آن را حل خواهید کرد:
در زمره تازهترین روشهای حل این مسأله که متعلق به "Hansch" می باشد (1971) مبتنی بر ارتباط فعالیتهای بیولوژیک مولکول در قالب پارامتر«آب گریزی» آن که به عنوان ثابت اکتاتل به آب، معرفی میشود.
این روش، در طول انرژی آزاد خطی در شیمی فیزیک زیستی قرار میگیرد. (یعنی: روابط Hammett(1935))، که انرژی آزاد(لگاریتم ثابت تعادل)، به نوع دیگری از انرژی یا خواص ماده که بر اساس انرژی آزاد سنجیده میشود، وابسته است.
همانظور که پیشنهاد شد، سادهترین چنین روشهائی به عنوان مدلهای خطی مطرحند و رگریسون خطی برای آن استفاده میشود. به همین ترتیب که مدل پیچیدهتر میشود، مدل به سمت رگریسون غیر خطی میل میکند(Kowalski 1984) و .(Andrea & Kalayeh1991)
به منظور توالی چنین مدلهائی، تا حصول روابطی میان خواص فیزیکی ماده ومیزان فعالیتهای آن می بایستی در مدلسازی به روش«شبکه عصبی» بکار گرفته شود.
علاوه بر «آب گریزی»، سایر پارامترهای مؤثر و مرتبط به عنوان متغیرهای مستقل در چنین مدلهائی، عبارتند از:
نسبت آرایش اتمها به نیروهای واندروالس و خواص الکترواستاتیک.
یک روش که در برگیرنده اطلاعات 3 بعدی در قالب یک مدل باشد مانند «آنالیز میدانهای مولکولی تطبیقی که به اختصار COMFA خوانده میشود.
COMFA: Comparative Molecular Field Analysis |
QSAR: Quantitative Structure- Activity Relationship |
QSPR: Quantitative Structure – Properties Relationship |
منبع:http://www.nano.ir
منابع :
1) Andrea, T., and H. Kalayeh. 1991. J. Med. Chem. v. 34. p. 2824.
2) Brunger, A.T., J. Kuriyan, and M. Karplus. 1987. Science. 235, 458.
3) Case, D., J. Wiley, and Chichester. 1998. NMR refinement. Encyclopedia of Computational Chemistry. P.v.R. Schleyer(ed.). p. 1866.
4) Cramer, R.D., D.E. Patterson, and J.D. Bunce. 1988. J. Amer. Chem. Soc. v. 110. p. 5959.
5) Crippen, G.M., and T.F. Havel. 1988. Distance Geometry and Molecular Conformations. Research Studies Press. Wiley.New York.
6) Ferrin, T.E., and T.E. Klein. 1998. Computer graphics and molecular modeling. Encyclopedia of Computational
7) Hammett, L.P. 1935. Chem. Rev. v. 17. 125.
8) Hansch, C. 1971. Drug Design, E.J. Ariens (ed.). Academic Press. New York. vol. 1, chapter 2.
9) Katrizky, A., V. Lobanov, and M. Karelson. 1995. Chem. Soc. Rev. v. 24. 279.
10) Kowalski, B. (ed.). 1984. Chemometrics.Mathematics and Statistics in Chemistry. D. Reidel Publishing Co. Dordecht.
11) Joliffe, I.T. 1986. Principal Component Analysis. Springer-Verlag. New York.
12) Kramer, B., G. Metz, M. Rarey, and T. Lengauer. 1999. Med. Chem. Res. 9. 463.
13) Kick, E.M., E.M.D.C. Roe, A.G. Skillman, G.C. Liu, T.J.A. Ewing, Y.X. Sun, I.D. Kuntz, and J.A. Ellman. 1997.
14) Langridge, R., T.E. Ferrin, I.D. Kuntz, and M.L. Connolly. 1981. Science. 211. p. 611.
15) Rao, M.S., and A.J. Olson. 1999. Proteins.Structure, Function and Genetics .34. 173.
16) Zou, X.Q., Y.X. Sun, and I.D. Kuntz. 1999. J. Amer. Chem. Soc. 121. 8033.
17) Thayer, A.M. 2000. Bioinformatics for the masses. Chem. Eng. News. 19.
Resource